219 research outputs found

    Control via electron count of the competition between magnetism and superconductivity in cobalt and nickel doped NaFeAs

    Full text link
    Using a combination of neutron, muon and synchrotron techniques we show how the magnetic state in NaFeAs can be tuned into superconductivity by replacing Fe by either Co or Ni. Electron count is the dominant factor, since Ni-doping has double the effect of Co-doping for the same doping level. We follow the structural, magnetic and superconducting properties as a function of doping to show how the superconducting state evolves, concluding that the addition of 0.1 electrons per Fe atom is sufficient to traverse the superconducting domain, and that magnetic order coexists with superconductivity at doping levels less than 0.025 electrons per Fe atom.Comment: 4 pages, 6 figure

    A new 111 type iron pnictide superconductor LiFeP

    Full text link
    A new iron pnictide LiFeP superconductor was found. The compound crystallizes into a Cu2Sb structure containing an FeP layer showing superconductivity with maximum Tc of 6K. This is the first 111 type iron pnictide superconductor containing no arsenic. The new superconductor is featured with itinerant behavior at normal state that could helpful to understand the novel superconducting mechanism of iron pnictide compounds.Comment: 3 figures + 1 tabl

    A Chemical Glycoproteomics Platform Reveals O-GlcNAcylation of Mitochondrial Voltage-Dependent Anion Channel 2

    Get PDF
    SummaryProtein modification by O-linked β-N-acetylglucosamine (O-GlcNAc) is a critical cell signaling modality, but identifying signal-specific O-GlcNAcylation events remains a significant experimental challenge. Here, we describe a method for visualizing and analyzing organelle- and stimulus-specific O-GlcNAcylated proteins and use it to identify the mitochondrial voltage-dependent anion channel 2 (VDAC2) as an O-GlcNAc substrate. VDAC2−/− cells resist the mitochondrial dysfunction and apoptosis caused by global O-GlcNAc perturbation, demonstrating a functional connection between O-GlcNAc signaling and mitochondrial physiology through VDAC2. More broadly, our method will enable the discovery of signal-specific O-GlcNAcylation events in a wide array of experimental contexts

    Arterial spin labelling reveals an abnormal cerebral perfusion pattern in Parkinson's disease

    Get PDF
    There is a need for objective imaging markers of Parkinson's disease status and progression. Positron emission tomography and single photon emission computed tomography studies have suggested patterns of abnormal cerebral perfusion in Parkinson's disease as potential functional biomarkers. This study aimed to identify an arterial spin labelling magnetic resonance-derived perfusion network as an accessible, non-invasive alternative. We used pseudo-continuous arterial spin labelling to measure cerebral grey matter perfusion in 61 subjects with Parkinson's disease with a range of motor and cognitive impairment, including patients with dementia and 29 age- and sex-matched controls. Principal component analysis was used to derive a Parkinson's disease-related perfusion network via logistic regression. Region of interest analysis of absolute perfusion values revealed that the Parkinson's disease pattern was characterized by decreased perfusion in posterior parieto-occipital cortex, precuneus and cuneus, and middle frontal gyri compared with healthy controls. Perfusion was preserved in globus pallidus, putamen, anterior cingulate and post- and pre-central gyri. Both motor and cognitive statuses were significant factors related to network score. A network approach, supported by arterial spin labelling-derived absolute perfusion values may provide a readily accessible neuroimaging method to characterize and track progression of both motor and cognitive status in Parkinson's diseas

    Stabilization of O-O Bonds by d(0) Cations in Li4+xNi1-xWO6 (0 <= x <= 0.25) Rock Salt Oxides as the Origin of Large Voltage Hysteresis

    Get PDF
    Multinary lithium oxides with the rock salt structure are of technological importance as cathode materials in rechargeable lithium ion batteries. Current state-of-the-art cathodes such as LiNi1/3Mn1/3Co1/3O2 rely on redox cycling of earth-abundant transition-metal cations to provide charge capacity. Recently, the possibility of using the oxide anion as a redox center in Li-rich rock salt oxides has been established as a new paradigm in the design of cathode materials with enhanced capacities (>200 mAh/g). To increase the lithium content and access electrons from oxygen-derived states, these materials typically require transition metals in high oxidation states, which can be easily achieved using d0 cations. However, Li-rich rock salt oxides with high valent d0 cations such as Nb5+ and Mo6+ show strikingly high voltage hysteresis between charge and discharge, the origin of which is uninvestigated. In this work, we study a series of Li-rich compounds, Li4+xNi1–xWO6 (0 ≤ x ≤ 0.25) adopting two new and distinct cation-ordered variants of the rock salt structure. The Li4.15Ni0.85WO6 (x = 0.15) phase has a large reversible capacity of 200 mAh/g, without accessing the Ni3+/Ni4+ redox couple, implying that more than two-thirds of the capacity is due to anionic redox, with good cyclability. The presence of the 5d0 W6+ cation affords extensive (>2 V) voltage hysteresis associated with the anionic redox. We present experimental evidence for the formation of strongly stabilized localized O–O single bonds that explain the energy penalty required to reduce the material upon discharge. The high valent d0 cation associates localized anion–anion bonding with the anion redox capacity

    Human marginal zone B cell development from early T2 progenitors.

    Get PDF
    B cells emerge from the bone marrow as transitional (TS) B cells that differentiate through T1, T2, and T3 stages to become naive B cells. We have identified a bifurcation of human B cell maturation from the T1 stage forming IgMhi and IgMlo developmental trajectories. IgMhi T2 cells have higher expression of α4β7 integrin and lower expression of IL-4 receptor (IL4R) compared with the IgMlo branch and are selectively recruited into gut-associated lymphoid tissue. IgMhi T2 cells also share transcriptomic features with marginal zone B cells (MZBs). Lineage progression from T1 cells to MZBs via an IgMhi trajectory is identified by pseudotime analysis of scRNA-sequencing data. Reduced frequency of IgMhi gut-homing T2 cells is observed in severe SLE and is associated with reduction of MZBs and their putative IgMhi precursors. The collapse of the gut-associated MZB maturational axis in severe SLE affirms its existence in health

    A computationally-guided non-equilibrium synthesis approach to materials discovery in the SrO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> phase field

    Get PDF
    Glass-crystallisation synthesis is coupled to probe structure prediction for the guided discovery of new metastable oxides in the SrO-Al2O3-SiO2 phase field, yielding a new ternary ribbon-silicate, Sr2Si3O8. In principle, this methodology can be applied to a wide range of oxide chemistries by selecting an appropriate non-equilibrium synthesis route
    corecore